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Definition of terms

A population: The set of all the elements of interest [16].
A sample: Is a subset of the population [15].
A parameter: is a measurement on a population that characterizes one of

its features [16].
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A point estimator: is a sample statistic that predicts the value of the
corresponding parameter [15].

A statistics: A statistic is a measure on the items in a random sample. An
example of a statistic is the mean (i.e. average) of the measures in the
sample [15].

A sampling distribution: The Sampling Distribution of a statistic is the
set of values that we would obtain if we draw an infinite number of
random samples of size n from a given population and calculate the

statistic on each sample. [16].

Unbiasedness: sampling distribution of the point estimator is centered on

the population parameter
E( é)z e  [16]
Efficient: the point estimator has the smallest possible standard deviation

6

of all similar point estimators (i.e. V ar[@| is smallest). [16]

Consistent: the point estimator tends toward a population parameter as

the sample size increases (i.e. E(é) -8 and ” ar(é) -0 asn-=) [16]
Simulation: is a numerical technique for conducting experiments on the
computer [12].

Simulation in statistical terminology: simulation is an artificial data

generation process, driven by model design and parameter settings. The
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output is a sample, and drawing conclusions about how the process might
change if the conditions or parameters underlying the process are changed
[5]. Sample statistics are computed and tested as estimators of the
population parameters.

Probabilistic simulation: use sample generated from known underlying
distributions [20].

Bootstrap simulation method: Bootstrap method can be used to estimate
the population parameter when the distribution of the population is
unknown by creating a simulated original population by repeating sample
from the original sample with replacement [20]. The basic idea behind
bootstrapping is that if the sample is a good representative of the
population, the sampling distribution of interest may be estimated by
generating a large number of new samples (called resample) from the
original sample. In another way, bootstrap treats the sample as if it is the
population [18]. The only assumption of the bootstrap method is that the
original sample is representative of the population from which it was

drawn [7].

The normal distribution: is a continuous distribution with probability

density function:

oy ot
Aé —00 <y <o ]3],
n

fl ¥
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The parameters H and ¢ are the mean and the variance respectively, of

the normal random variable y.

The uniform distribution: is a continuous distribution with the density

function:

0 elsewhere

The exponential distribution: is a continuous probability distribution

with the probability density function.

f(y)=e% (0<y <o)

with U4=p and o’ =p* [13].
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Abstract

The focus of this study is to use the probabilistic and the bootstrap
simulation methods to investigate graphically, computationally
and analytically the three main characteristics: location, spread
and the shape of the sampling distribution of the three well known

sample statistics: the sample mean, the sample median, and the
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sample variance by varying the sample size and distribution of the
underlying population.
The simulated results of this study can be summarized as follows:
a) The sampling distribution of the sample mean, the sample
median and the sample variance can be approximated by a normal
distribution, with a very small bias, provided the sample size is
large. However, for small sample size, the normality of the
sampling distribution of these statistics depends strongly on the
underlying population distribution. The simulated results have
showed that the sample mean is less variance than the sample

median.

b) The graphical and analytical simulated results indicated that the

(n —1)sf
shape of the sampling distribution of the statistics ol is

approximately chi-square with n-1 degrees of freedom for small
sample size and the underlying distribution is normal. Not
symmetric for small degrees of freedom.

¢) The simulated results showed that the sample mean and the
sample variance are not correlated when the underlying population

distributions are uniform or normal; however, the simulated
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results showed that these statistics are correlated in the

exponential case.

Chapter One

1.1 Introduction

The Probabilistic and Bootstrapping simulation methods offer ways to

study the sampling distributions of statistics graphically through
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histograms, and to visualize the distribution of data sets.

Probabilistic simulations were used to study the sampling distribution of

the sample mean y by many researchers Weir, McManus, and Kiely
Marasinghe et al., delMas et al.[23], they have studied the sampling
distribution and the central limit theorem by specifying and changing the
population underlying distribution with different sample sizes.

Arnholt [12], Schwarz and Sutherland [21] and Hesterberg [19], have
used probabilistic simulation to visualize and illustrate many properties of
the sampling distributions that depend on the specific statistic, sample
size, and the population distribution. Also Ng and Wong [14] have
demonstrated the central limit theorem graphically by choosing a specific
distribution from which the data are generated, a sample size and the
number of samples to be drawn.

In this thesis, we have used two methods of simulations, the Probabilistic
and the Bootstrapping simulation methods to study the sampling
distribution of the sample mean, sample median and sample variance
graphically and analytically.

To be specific, we have studied the behavior of the sampling distribution
of these statistics computed from 1000 repeated samples with
replacement of different sizes (i.e. n=2, 5, 10, 15, 20, 30, 50 and 100)
drawn from the symmetric normal distribution, the symmetric uniform

distribution and the non-symmetric exponential distribution in order to



40

assess the effect of symmetry on the sampling distribution of the above
statistics. This simulation study have allowed us to gain insight into the
behavior of the statistics: sample mean, sample median and sample
variance by comparing the theoretical results with the simulated results.
In particular, we have compared the center, the spread and the shape of
the simulated results with the theoretical results.
On the other hand, we have studied the correlation between the sample
mean and sample variance.
In general we have illustrated four very important theorems in statistics
using computer simulation.

1) The law of large samples states that as sample size increases, the

sample mean is likely to be more accurate estimate of the true population

(le. H=H).
2) The central limit theorem states that as sample size get larger; the
sampling distribution of the sample mean becomes approximately normal,

regardless of the shape of the underlying population distribution.
3) The median theorem states that if the population is N ( u,o 2) then the

medians of random samples of size n are distributed with a mean of the

medians 4, and with standard deviation which is equal to the population

standard deviation divided by the square root of the sample size and

multiplied by the constant 1.25 (i.e.0, =1.25F),
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4) The independence of sample mean and the sample variance states that
if we draw a random sample from N (0, 1), then the sample mean and the
sample variance are not correlated.

Through Probabilistic and Bootstrapping simulation, graphically,
analytically and computationally, we have answered the following main

questions.

1) Are the sampling distribution of the sample mean and sample median
unbiased estimators of the true population mean, for the above mentioned

probability distributions and for each sample size?

2) Are the standard deviations of the sample mean and the sample
medians equal to the population standard deviation divided by square root
of the sample size, for the above mentioned probability distributions and

for each sample size?

3) What is the overall shape of the sampling distribution graphically and
analytically using Kolmogorov-smirnov goodness of fit test, for the above

mentioned probability distributions and for each sample size?

(n —1)s]
4) Is the sampling distribution of the quantity & 2 follows a chi-

square with (n-1) degrees of freedom graphically and analytically using
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Kolmogorov-smirnov goodness of fit test, for the above mentioned

probability distribution and for each sample size?

5) Are the sample mean and the sample variance uncorrelated regardless

of the underlying population distribution?

1.2 Simulation and sampling distribution:

In this study we have used Probabilistic and Bootstrap simulation to study
the sampling distribution by drawing 1000 samples of size “n” from a
given population and computing the sample mean, sample median, and
the sample variance for each sample, then comparing our simulated
results for the sampling distribution for each of the above statistics with
the theoretical results, and checked if these results are characterized with
the properties of a good estimator to include unbiasedness (center),
consistency (spread) and the shape.

Every simulated statistic has a sampling distribution. For example, the
distribution of the means of an infinite number of samples would be
called the sampling distribution of the mean. For the distribution of an
infinite number of sample median would be called the sampling

distribution of the median, similarly for the sample variance.
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We have used the probabilistic and the bootstrap simulation to compare
the theoretical results with the simulated results graphically and
analytically using the Kolmogorov-Smirnov goodness of fit test that can
be used to test the goodness of fit to any continuous probability
distribution. Previous studies utilized only the probabilistic simulation

method and the graphical results only.

1.2.1 Simulation of the sampling distribution of the mean:

In this study, the Probabilistic and Bootstrap simulation methods have
been used to study graphically, computationally and analytically the three
important properties of the sampling distribution of the sample mean by
simulating different sample sizes from three different populations: N(0,1),

U(10,20), EXP(2).

The expected value of the sampling distribution of the mean is

represented by the symbol I ; a sampling distribution of the sample mean

may also be described with a parameter corresponding to the standard

deviation, symbolized by 0 [3].

We have used the two methods of simulation to verify graphically and

analytically if these parameters are closely related to the parameters of the
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population distribution, with the relationship being described by the

Central Limit Theorem.

The Central Limit Theorem essentially states “that the mean of the

sampling distribution of the mean ( ;) equals the mean of the population

(M) and that the standard error of the mean () equals the standard
deviation of the population (0 ) divided by the square root of n as the
sample size gets infinitely larger (n — ==)”. In addition, “the sampling

distribution of the mean will approach a normal distribution” [6].

These relationships can be summarized as:

1) H=H;:  (Unbiasedness)

2) 0. =7 (Consistency)

3) The sampling distribution of the sample mean will approach a normal

distribution as n — © [§].

In practice, an infinite sample size is not practical. The Central Limit
Theorem is very powerful. In most situations, this theorem works
reasonably well with n greater than 10 or 20. Thus, it is possible to
closely approximate what the distribution of sample means looks like,

even with relatively small sample sizes [6].
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In general the purpose of the central limit theorem simulation is to
demonstrate that under certain conditions and for large enough samples,
the sampling distribution of the sample mean can be approximated by
normal distribution. The conditions under these properties can be
illustrated by direct manipulation of sample size, shape and symmetry of

the underlying distribution and number of samples drawn [9].

1.2.2 Simulation of the sampling distribution of the median:

The probabilistic and bootstrap simulation methods have been used to
study graphically, computationally and analytically the three important
properties of the sampling distribution of the sample median by
simulating different sample sizes from three different populations: N(0,1),

U(10,20), EXP(2).

If the population follows N (,Ll, o 2) , the medians of random samples of

size n are distributed with a mean of the median denoted by M, and a

standard deviation denoted by 5
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We have used the two methods of simulation to verify, graphically and
analytically, if these parameters are closely related to the parameters of

the population distribution.
These relationships can be summarized as:

1) p=p (Unbiasedness).

2) o =1.25% (Consistency).

3) The distribution of sample medians is nearly normal if n is large

(Shape) [3].

1.2.3 Simulation of the sampling distribution of the sample variance:

The Probabilistic and Bootstrap simulation methods have been used to
study graphically and analytically the properties of the sampling
distribution of the sample variance by simulating different sample sizes

from three different populations: N(0,1), U(10,20), EXP(2).

Independent samples of size n have been simulated from a normal
distribution with known varianceg?®, for each sample the sample

variances si%, $2°,++« 5, «»« are computed, then we calculate for each
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sample i the quantity

The histogram of these quantities would converge in distribution to the

chi square distribution ( x> ) with n-1 degrees of freedom.

1.2.4 Simulation of the independence of the sample means and sample

variance:

The Probabilistic and the Bootstrap simulation methods were used to
study  analytically the correlation between the sample variance the
sample mean by simulating different sample sizes from three different
populations: N(0,1), U(10,20), EXP(2).

We have used the two methods of simulation to verify analytically that

the quantities v; and W, that shown below are uncorrelated when the

underlying distribution is NV ( uo 2)
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Chapter Two

Literature review

Simulation has had a major impact on the practice of statistics and
understanding statistical methods and concepts. The central limit theorem
was one of the more popular topics that were illustrated by simulation.
Also using simulation to understand the concepts related to students-t

distribution using Minitab.

In addition, simulation was used to illustrate the idea of inference and
sampling error and generating a sample to find a confidence interval.
Moreover, the binomial distribution and regression analysis are other

topics that were studied by using simulation.
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Simulation was used to explore the properties of any sampling
distribution and to understand the sampling distribution and the central
limit theorem by specifying and changing the shape of a population,
choosing different sampling sizes, and exploring sampling distributions

by randomly drawing large numbers of samples [10].

Many statistics educators have studied sampling distributions and the
central limit theorem. For examples Ng and Wong have used simulation
experiments on the Internet to illustrate Central Limit Theorem (CLT)
concepts. The CLT can be demonstrated graphically, the program begins
by allowing the user to choose a distribution, from which the data are to
be generated, a sample size for the sampling distribution for the mean,
and the number of samples to be drawn. By changing the sample size, the
user can observe how fast the probability histogram approaches the
normal curve as the sample size increases. The program also allows the
user to compare sampling distributions of other statistics as well such as
the median and standard deviation [14].

Many other statistics educators have used simulation exercises on the
Internet for the CLT like West and Ogden [24] and with other topics by

Schwarz and Sutherland [21].

Kersten [11] have used Probabilistic simulation methods to clarify

concepts and theorems of statistics (such as the CLT) the author
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conducted three simulations, each of 300 random samples forn=1,n =4,
and n = 16 from the IRANDOM population. The mean of each sample
was computed and the resulting means were used to construct a
histogram. This will help us see how mean of the sample means is close
to the population mean but the standard deviation decrease for the 300
random samples as n increases. We can also see from the histograms that
as n becomes larger, the distribution of the sample means becomes more

similar to the normal distribution.

Dambolena [4] have used computer simulations to understand the CLT.
Using BASIC® programming, he suggested drawing a random sample of
size 30 from a discrete uniform population with mean ux and standard
deviation 0 , computing the sample mean, and repeating this procedure
1000 times. Using MINITAB®, the 1000 means obtained from samples
of size n = 30 can be output in a separate file that would subsequently be

used to generate histograms and to illustrate the concepts of the CLT.

Yu, Behrens, and Anthony [4] have used simulation to gain a better
understanding of the concept of an expected value, the shape of

distributions of varying sizes, and the meaning of a sampling distribution.

Yu et al. [25] have concluded that some aspects of the CLT can be clearly
illustrated by computer software but some cannot. For example,

simulation can perform the function of showing the process of a sampling
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distribution, but abstract concepts such as equality, independence, and the
relationship between the CLT and hypothesis testing are difficult to

present.

Weir, McManus, and Kiely, Marasinghe et al., delMas et al. [23] have
used simulation to study the sampling distributions and the CLT by
specifying and changing the shape of a population, choosing different
sample sizes, and exploring sampling distributions by randomly drawing

large numbers of samples.

Arnholt [2] have used simulation to study the concept of a sampling
distribution, which can provide greater insight and a more thorough
understanding of statistics and their distributions. They have proved that
every statistic has a sampling distribution and using simulation, can
provide a concrete way to illustrate this as well as a way to reveal how
other factors, such as sample size, and affect the sampling distribution.
Sampling distributions can be generated for many commonly used
statistics (such as the sample sum, mean, median, standard deviation,
variance, range, and z-statistic). Visualizations can illustrate many of the
properties mentioned previously including the facts that different statistics
have different sampling distributions that depend on the specific statistic,

sample size, and the underlying distribution, that the variability in the
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sampling distribution can be decreased by increasing the sample size, and
that for large samples, the sampling distribution can be approximated by a

normal distribution.

Tim C. Hesterberg [19] had used bootstrapping as reinforcement of
providing the experience in statistical concepts. He has used to estimate
sampling distribution, when they have data but do not know the

underlying distribution.

Chapter Three

Simulation procedure and Results

In this chapter we have used the Probabilistic and the Bootstrap
simulation methods to study the sampling distribution of the sample

mean, the sample median and the sample variance in which the samples
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are generated from the known underlying population distribution and the
Bootstrap method in which the sample is a good approximation of the
population, the sampling distribution of interest may be estimated by
generating a large number of new samples (called resample) from the
original population. Two symmetric and one non-symmetric population
distributions were used in this study. These population distributions are
the normal, the uniform and the exponential distribution. These
populations were selected in order to assess the effect of symmetry and
normality on the sampling distribution of the above mentioned statistics.

The following flowchart (1) summarizes the procedure:



Flowchart (no. 1)

Population distributions
N(0.1), U(10,20), EXP(2)

L2 2
Probabilstic simulation method ‘ ‘ Bootstrap simulation method ‘

l

‘ Draw a representative sample of size 1000 ‘

bootstrap 1000 samples from the original sample with n =2, 5, 10, 15, 20, 30, 50, 100|

! | }

Compute the sample mean compute the sample median compute the sample variance
for the 1000 samples. for the 1000 samples for the 1000 samples.

! i !

Compute: (n-1) multiplied by the
‘sample variance divided by the
population variance:

l l l

Buid histogram for the
1000 sample variance

Compute the mean and the standard || Compute the mean and the standard
deviation for the sample means deviation for the sample medians

Build histogram for the Build histogram for the
1000 mean 1000 median

\
.

Compare the theoretical results
with the simulated results

Drawing decisions about the center , spread and the shape for each histograr
and smulated data distribution
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3.1 simulation procedure and Sampling distribution of the

sample mean:

In this section we have studied graphically, computationally and
analytically the sampling distribution of the sample mean using two
methods of simulation, the Probabilistic method and the Bootstrap
method.

Without loss of generality and for simulation purposes, Minitab, SPSS,
Excel and Statistica softwares were used in this thesis to generate random
samples from the three distributions with their specific parameter values.
1) Normal distribution with mean 0 and variance 1, N (0, 1).

2) Uniform distribution with lower limit 10 and upper limit 20,

U (10, 20).

3) Exponential distribution with mean 2, EXP (2).

Simulation procedure

1000 samples were simulated from the above mentioned distributions
with sample sizes n=2, 5, 10, 15, 20, 30, 50 and 100. Then histograms

were drawn to explore the shape of the sampling distribution of the

sample mean with parameters /- and 0.

Kolmogorov-smirnov goodness of fit test for normality was used in each

case to assess the fit.
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Using simulations and in particular the histograms in appendix 1, the
tables (3.1.1-3.1.6) and the bar-charts (1.1-1.3), we arrive at the following

conclusions:
1) The mean of the sample means (simulated mean of the means) M-

from normal, uniform and exponential distribution are approximately
equal to the population mean regardless of the sample size. This agrees
with the theory that the sample mean is an unbiased estimator of the

population mean regardless of the underlying population distribution (i.e.

M = I ; unbiasedness property).

2) Simulated Standard deviation of the means is approximately equal to

the population standard deviation times T when samples were drawn
n

from normal, uniform and exponential for all sample sizes. This is as

expected from theory because even if the underlying distribution is not

g

normal (i.e.9; =7 ; consistency property).

3) The spread in the distribution decreases with increasing sample size.

This is as expected from theory because even if the underlying

distribution is not normal (i.e. Oy =7 .; spread).
4) The distributions appear to be shaped like a normal distribution when

the underlying distribution is normal and uniform, and the skewness is
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close to zero in all sample sizes. But for the exponential distribution the
sample means have distributions that are more symmetric, as the sample
size increases. The skewness is close to zero at n=100.

5) The fitting distribution test for normality “Kolmogorov-Smirnov d” is
not significant in all sample sizes when the underlying distribution is
normal and uniform. So we conclude that we can’t reject the null
hypothesis that states “the distribution is fitted to the normal
distribution”. That is the sampling distribution of the sample mean is
normally distributed for the selected sample sizes.

But when the underlying distribution is exponential, this test of normality

is significant for small sample sizes, but when n=100, we conclude that

test is not significant (i.e. the sampling distribution of X is approximately
normal).
6) The simulated results using both the Probabilistic simulation method

and the Bootstrap method arrived at the same conclusions.

a) H= M

b) 0. =

t

c) The shape ofy is approximately normal.
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Probabilistic simulation results table for the sampling distribution of the sample mean: N (0, 1).

P-VALUE
SAMPLE | THEORITICAL | SIMULATED | THEORETICAL | SIMULATED | SIMULATED | SIMULATED | KOLMOGOROV-
SIZEn | (POPULATION) | MEAN  OF | STANDARD STANDARD | SKEWNESS | KURTOSIS | SMIRNOV
MEAN U DEVIATION | DEVIATION NORMALITY
MEANS [ o TEST
X
n=2 0 -0.01 0.71 0.74 - 19 0.33 P=n.s
n=5 0 -0.01 0.45 0.46 —14 -0.13 P=n.s
n=10 0 0.00 0.32 0.32 -04 -0.17 P=n.s
=15 0 0.00 0.26 0.26 0.03 -0.02 P=n.s
n=20 0 0.00 0.22 0.23 0.04 0.06 P=n.s
n=30 0 0.01 0.18 0.19 0.04 -0.04 P=n.s
n=50 0 0.00 0.14 0.15 0.04 0.32 P=n.s
n=100 |0 0.00 0.10 0.10 0.01 0.00 P=n.s
Unbiasdness Spread Shape

™M X A X X7
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Table (3.1.2)

Bootstrap Simulation results for the sampling distribution of the sample mean:

N (0, 1).

P-VALUE OF
SAMPLE | THEORETICAL | SIMULATED | THEORETICAL | SIMULATED | SIMULATED | SIMULATED | KOLMOGOROV
SIZE n (POPULATION) | MEAN  OF | STANDARD STANDARD | SKEWNESS KURTOSIS SMIRNOV
MEAN M THE MEANS | DEVIATION DEVIATION NORMALITY
o- FITTING TEST
H;

n=2 0 0.08 0.71 0.69 0.00 -0.57 P=n.s
n=5 0 0.04 0.45 0.45 -0.07 -0.26 P=n.s
n=10 0 0.02 0.32 0.31 -0.01 -0.01 P=n.s
n=15 0 0.02 0.23 0.25 -0.02 -0.01 P=n.s
n=20 0 0.02 0.22 0.21 0.03 -0.02 P=n.s
n=30 0 0.02 0.18 0.18 0.02 -0.14 P=n.s
n=50 0 0.02 0.14 0.14 0.00 0.07 P=n.s
n=100 0 0.02 0.10 0.09 0.00 0.04 P=n.s




Figure (1.1)

Sampling distribution of the sample mean: N (0, 1)
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Table (3.1.3)

Bootstrap Simulation results for the sampling distribution 0f the mean: U (10, 20)
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P-VALUE  OF
SAMPL THEORITICAL | SIMULATED | THEORETICAL | SIMULATED | SIMULATED | SIMULATED | KOLMOGOROV
ESIZEn | (POPULATION) | MEAN  OF | STANDARD STANDARD | SKEWNESS KURTOSIS SMIRNOV
THE MEANS | DEVIATION DEVIATION NORMALITY
MEAN H
FITTING TEST
H; =3
n= 15 15.05 2.04 2.04 0.102 -0.572 P=n.s
n=5 15 15.04 1.34 1.32 0.080 -0.178 P=n.s
n=10 15 15.08 0.93 0.93 0.099 -0.013 P=n.s
n=15 15 15.08 0.73 0.73 0.046 -0.145 P=n.s
n=20 15 15.08 0.65 0.65 -0.068 0.079 P=n.s
n=30 15 15.01 0.53 0.53 -0.070 0.057 P=n.s
n=50 15 15.10 0.42 0.42 -0.014 -0.090 P=n.s
n=100 15 15.10 0.29 0.29 -0.102 -0.294 P=n.s
Table (3.1.4)
Probabilistic Simulation results for the sampling distribution of the mean: U (10, 20).
P-VALUE OF
SAMPLE | THEORETICAL | SIMULATED | THEORETICAL | SIMULATED | SIMULATED | SIMULATED [ KOLMOGOROV-
SIZE (POPULATION) | MEAN  OF | STANDARD. STANDARD | SKEWNESS KURTOSIS SMIRNOV
THE MEANS | DEVIATION DEVIATION NORMALITY
MEAN U
s o- FITTING TEST
X X
n= 15 14.96 2.04 2.04 -0.11 -0.52 P=n.s
n=5 15 15.01 1.29 1.27 -0.06 -0.09 P=n.s
n=10 15 15.02 0.91 0.91 0.05 0.01 P=n.s
n=15 15 14.95 0.75 0.74 0.05 -0.03 P=n.s
n=20 15 14.99 0.65 0.65 0.09 -0.03 P=n.s
n=30 15 15.00 0.53 0.53 0.06 0.09 P=n.s
n=50 15 14.99 0.41 0.40 -0.05 -0.07 P=n.s
n=100 15 14.99 0.29 0.28 0.01 -0.01 P=n.s




Figure (1.2)

Sampling distribution of the sample mean: U (10, 20)
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Table (3.1.5)

Bootstrap Simulation results for the sampling distribution of the mean: EXP (2).
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P-VALUE OF
SAMPLE THEORITICAL SIMULATED THEORETICA SIMULATED SIMULAT | SIMULA | KOLMOGORO
SIZE n (POPULATION) MEAN OF THE | L STANDARD | STANDARD ED TED V  SMIRNOV
MEAN U DEVIATION DEVIATION SKEWNE | KURTOS | NORMALITY
MEANS /J; o SS IS FITTING TEST
X
=2 2 1.87 1.41 1.37 1.36 1.97 P<0.01
n=>5 2 1.89 0.89 0.86 0.78 0.38 P<0.01
n=10 2 1.88 0.63 0.62 0.72 0.71 P<0.01
n=15 2 1.86 0.52 0.49 0.56 0.26 P<0.01
n=20 2 1.85 0.45 0.43 0.52 0.39 P<0.01
n=30 2 1.85 0.37 0.35 0.51 0.34 P<0.01
n=50 2 1.87 0.28 0.26 0.37 0.06 P<0.01
n=100 2 1.87 0.20 0.18 0.18 -0.05 P=n.s
Table (3.1.6)
Probabilistic Simulation results for the sampling distribution of the mean: EXP (2).
P-VALUE  OF
SAMPL THEORETICAL | SIMULATED | THEORETICAL | SIMULATED | SIMULATED | SIMULATED | KOLMOGOROV
ESIZEn | MEAN MEAN  OF | STANDARD STANDARD | SKEWNESS KURTOSIS SMIRNOV
(POPULATION) | THE MEANS | DEVIATION DEVIATION NORMALITY
s o- FITTING TEST
X X
n=2 2 2.02 1.40 1.44 1.35 2.62 P<.01
n=5 2 2.02 0.89 0.88 0.79 1.02 P<.01
n=10 2 2.03 0.63 0.62 0.45 0.16 P<.01
n=15 2 2.02 0.52 0.50 0.34 -0.06 P<.01
n=20 2 2.02 0.45 0.44 0.26 -0.08 P<.01
n=30 2 2.02 0.37 0.36 0.25 0.36 P<.01
n=50 2 2.01 0.28 0.28 0.32 -0.11 P<.05
n=100 2 2.01 0.20 0.20 0.20 0.11 P=n.s




Figure (1.3)

Sampling distribution of the sample mean: EXP (2)
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3.2 simulation procedure and sampling distribution of the

sample median:

In this section we have studied graphically, computationally and
analytically the sampling distribution of the sample median using the two
methods of simulation, the Probabilistic and the Bootstrap methods. We

have used three distributions N (0, 1), U (10, 20) and EXP (2).

Simulation procedure:

1000 samples were drawn from the above-mentioned distributions with
sample sizes n=2, 5, 10, 15, 20, 30, 50 and 100. Then histograms were

drawn to explore the sampling distribution of the sample median with

parameters 4, and O, .

Kolmogorov-smirnov goodness of fit test for normality was used in each
case to assess the fit.
Using simulations and in particular the histograms in appendix 2, the
tables (3.2.1-3.2.6) and the bar charts (2.1-2.3), we arrive at the following
conclusions:
1) The sample mean of the medians (simulated mean of medians) from
normal, uniform and exponential distribution is approximately equal to

the population mean regardless of the sample size. This agrees with the
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theory that a sample median is an unbiased estimator of the population

mean regardless of the underlying population distribution (i.e. H = M, )

2) Simulated Standard deviation of the medians is approximately equal to

1
the population standard deviation times1.25 T regardless to the sample
n

sizes and when samples drawn from normal, uniform and exponential for

all sample sizes. This is as expected from theory because even if the

underlying distribution is not normal (i.e. 0, =1.25F%),

3) The spread in the distribution decreases with increasing sample size.
This is as expected from theory because even if the underlying

distribution is not normal

4) The distributions appear to be shaped like a normal distribution when
the underlying distribution is normal and uniform, and the skewness is
close to zero in all sample sizes. But for the exponential distribution the
sample means have distributions that are more symmetric, as the sample
size increases. The skewness is close to zero at n=100.

5) The fitting distribution test for normality “kolmogorov-smirnov d” is

not significant in all sample sizes when the underlying distribution is
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normal and uniform. So we conclude that we can’t reject the null
hypothesis that says “the distribution is fitted to the normal
distribution”. That is the sampling distribution of the sample medians is
normally distributed for the selected sample sizes.

But when the underlying distribution is exponential, this test of normality
is significant for all sample sizes but when n=100 and larger sizes, we
conclude that test is not significant (i.e. the sampling distribution of the
median is approximately normal)

6) The simulated results using both probabilistic simulation method and

the bootstrap method arrived at the same conclusions.

DH=H, .
2)0, :1.25%.

3) The shape of % is normal.



Table (3.2.1)

Probabilistic Simulation result for the sampling distribution of the sample median: N (0, 1)
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SAMPLE | THEORETICAL | SIMULATED | THEORETICAL | SIMULATED P-VALUE FOR
SIZE (POPULATION) [ MEAN STANDARD STANDARD SIMULATED | SIMULATED | KOLMOGOROV-
MEAN /J ,Ll DEVIATION DEVIATION SKEWNESS KURTOSIS SMIRNOV
%
JX NORMALITY

TEST
n= 0 0.00 0.88 0.74 -0.19 0.33 P=n.s
n=5 0 -0.01 0.56 0.55 0.00 0.09 P=n.s
n=10 0 -0.01 0.39 0.38 0.00 0.04 P=n.s
n=15 0 0.00 0.32 0.32 0.08 0.07 P=n.s
n=20 0 0.00 0.30 0.32 0.08 0.04 P=n.s
n=30 0 0.00 0.23 0.27 0.07 0.05 P=n.s
n=50 0 0.00 0.18 0.18 0.06 0.34 P=n.s
n=100 0 0.00 0.13 0.13 0.02 0.21 P=n.s

Table (3.2.2)
Bootstrap Simulation results for the sampling distribution of the sample median: N (0, 1).
SAMPLE | THEORETICAL | SIMULATED | THEORETICAL | SIMULATED | SIMULATED | SIMULATED | P-VALUE OF
SIZE (POPULATION) | MEAN STANDARD STANDARD SKEW NESS | KURTOSIS KOLMOGOROV-
DEVIATION DEVIATION SMIRNOV
MEAN H M,
0-% NORMALITY

FITTING TEST.
n=2 0 0.08 0.88 0.69 0.00 -0.56 P=n.s
n=5 0 0.06 0.56 0.55 -0.07 0.35 P=n.s
n=10 0 0.04 0.39 0.38 -0.06 1.09 P=n.s
n=15 0 0.04 0.32 0.32 -0.09 0.62 P=n.s
n=20 0 0.03 0.28 0.27 -0.08 0.39 P=n.s
n=30 0 0.04 0.23 0.23 -0.02 -0.39 P=n.s
n=50 0 0.04 0.18 0.18 0.08 -1.24 P=n.s
n=100 0 0.03 0.13 0.12 0.02 -1.87 P=n.s

Figure (2.1)




Sampling distribution of the sample median: N (0, 1)
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Probabilistic Simulation result for the sampling distribution of the sample median: U (10, 20).

SAMPLE

SIZE

THEORETICAL

(POPULATION)

MEAN U

SIMULATED | THEORETICAL | SIMULATED
MEAN STD.DEVIATION | STD.DEVIATION
H g,

SIMULATED

SKEWNESS

SIMULATED

KURTOSIS

P-VALUE OF
KOLMOGOROV-
SMIRNOV TEST
FOR

NORMALITY
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n=2 15 14.96 2.50 2.04 -0.11 -0.53 P=n.s
n=5 15 15.02 1.65 1.90 -0.02 -0.65 P=n.s
n=10 15 14.99 1.15 1.40 -0.03 -0.24 P=n.s
n=15 15 14.97 0.95 1.20 0.13 -0.35 P=n.s
n=20 15 14.96 0.81 1.04 0.09 -0.28 P=n.s
n=30 15 14.97 0.65 0.88 0.04 -0.03 P=n.s
n=50 15 14.98 0.51 0.67 0.09 -0.12 P=n.s
n=100 15 14.97 0.37 0.47 0.09 0.22 P=n.s
Table: (3.2.4)
Bootstrap Simulation results for the sampling distribution of the sample median: U (10, 20).
SAMPLE | THEORETICAL | SIMULATED | THEORETICAL | SIMULATED | SIMULATED | SIMULATED | P-VALUE OF
SIZE (POPULATION) | MEAN STANDARD STANDARD | SKEW NESS [ KURTOSIS KOLMOGOROV-
DEVIATION DEVIATION SMIRNOV
MEAN U M,
O-,’( NORMALITY
FITTING TEST .
n= 15 15.05 2.04 2.55 0.102 -0.572 P=n.s
=5 15 15.05 1.93 1.62 0.053 -0.756 P=n.s
n=10 15 15.10 1.43 1.15 -0.123 -0.605 P=n.s
n=15 15 15.12 1.27 0.94 -0.199 -0.585 P=n.s
n=20 15 15.15 1.09 0.81 -0.246 -0.543 P=n.s
n=30 15 15.20 0.93 0.66 -0.299 -0.388 P=n.s
n=50 15 15.22 0.75 0.52 -0.192 -0.385 P=n.s
n=100 15 15.26 0.55 0.36 0.260.263 -0.338 P=n.s
Figure (2.2)

Sampling distribution of the sample median: N (0, 1)
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Table (3.2.5)
Probabilistic Simulation results for the sampling distribution of the sample median: EXP (2).
SAMPLE | THEORETICAL | SIMULATED | THEORETICAL SIMULATED SIMULATED | SIMULATED | P-VALUE OF
SIZE n (POPULATION) | MEAN STANDARD STANDARD SKEW NESS | KURTOSIS KOLMOGOROV-
MEAN U U DEVIATION DEVIATION SMIRNOV
X
0-5( NORMALITY
FITTING TEST
n=2 2 2.02 1.76 1.44 1.35 2.80 P<0.01
n=>5 2 1.55 1.12 0.93 1.28 2.75 P<0.01
n=10 2 1.49 0.79 0.62 0.78 0.88 P<0.01
n=15 2 1.47 0.65 0.55 0.76 0.52 P<0.01
n=20 2 1.46 0.56 0.45 0.61 0.62 P<0.01
n=30 2 1.44 0.46 0.37 0.60 0.71 P<0.01
n=50 2 1.42 0.35 0.29 054 0.55 P<0.01
n=100 2 1.40 0.25 0.20 0.43 0.51 P=n.s
Table: (3.2.6)
Bootstrap Simulation results for the sampling distribution of the sample median: EXP (2).
SAMPLE | THEORETICAL SIMULATED | THEORITIC | SIMULATD SIMULATED | SIMULATED | P-VALUE OF
SIZE n (POPULATION) MEAN AL STANDARD SKEW NESS KURTOSIS KOLMOGOROV-
MEAN U u STANDAD DEVIATION SMIRNOV
X
DEVIATIN g NORMALITYFITTI
%
NG TEST
n=2 2 1.87 1.77 1.37 1.361 1.970 P<0.01
=5 2 1.47 1.12 0.89 1.163 1.348 P<0.01
n=10 2 1.39 0.7 0.58 1.003 1.780 P<0.01
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n=15 2 1.34 0.65 0.49 0.893 1.209 P<0.01
n=20 2 1.33 0.56 0.41 0.923 1.877 P<0.01
n=30 2 1.30 0.46 0.33 0.634 0.759 P<0.01
n=50 2 1.31 0.35 0.25 0.572 0.936 P<0.01
n=100 2 1.30 0.25 0.17 0.217 0.179 P=n.s




Figure (2.3)

Sampling distribution of the sample median: EXP (2)
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3.3 Simulation procedure and the sampling distribution of

2
(n=1)s,
w78

o)

the sample variance

In this section we have studied analytically the sampling distribution of

2
n-=1s.
the quantity# using two methods of simulation, probabilistic

o

method and bootstrap method. We have used three distributions: N (0, 1),

U (10, 20) and EXP (2).

Simulation procedure:

1000 samples were drawn from the above mentioned distributions with

sample sizes n=2, 5, 10, 15, 20, 30, 50 and 100. Histograms were drawn

to explore the sampling distribution of

2
n-1)s.
# . Kolmogorov-

)

smirnov goodness of fit test for the chi-square with (n-1) degrees of

freedom has been used in each case.
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Using simulations and in particular the histograms in appendix 3 and the

tables (3.3.1-3.3.6), we arrive at the following conclusions:

2
n-1)s.
The shape of the sampling distribution of #is positively

)
skewed for n=2, 5, 10, 15, 20 when the underlying distribution is normal;
since the skewness is far from zero which indicates that the population is
not symmetric. For n=30, 50, 100 regardless of the underlying
distribution, the shape of distribution is normal, because the skewness is
close to zero in these cases. This is as expected from theory because with
large samples, the sampling distribution is approximately normal even

though the underlying distribution is uniform distribution or exponential.

2) The fitting distribution test for chi-square (n-1), “kolmogorov smirnov
d “is not significant at n=2, 5, 10, 15& 20 and 100 when the underlying
distribution is normal. Therefore, we conclude that we cannot reject the
null hypothesis that says the “distribution is fitted to the chi-square
distribution with (n-1) degrees of freedom”.

This is as expected from theory because this quantity follows a chi-square
distribution with n-1 degrees of freedom if the under lying distribution is

normal.
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Table (3.3.1)Pr0babilistic Simulation result for the sampling distribution of the sample variance:

N(,1)
SAMPLE SIZE DEGREES OF | SIMULATED SIMULATED P-VALUE OF
FREEDOM (N-1) SKEWNESS KURTOSIS KOLMOGOV-

SMIRNOV  CHI-
SQUARE (N-1)
TEST

n=2 1 2.82 12..1 n.s

n=>5 4 1.36 2.77 n.s

n=10 9 0.99 1.56 n.s

n=15 14 0.79 0.99 n.s

n=20 19 0.59 0.77 n.s

n=30 29 043 0.31 0.01

n=50 49 0.46 0.35 0.01

n=100 99 0.19 -0.07 0.01

Table (3.3.2)Bootstrap Simulation results for the sampling distribution of the sample variance: N

o, 1)
SAMPLE SIZE DEGREES OF | SIMULATED KSIMULATED P-VALUE OF
FREEDOM (N-1) | SKEWNESS URTOSIS THE

KOLMOGOROV
SMIRNOV  CHI-
SQUARE  (N-1)
FITTING TEST

n=2 1 2.74 9.86 n.s

n=5 4 1.22 1.84 n.s

n=10 9 1.12 0.83 n.s

n=15 14 0.99 0.29 n.s

n=20 19 0.89 0.09 n.s

n=30 29 0.59 -0.07 0.01

n=50 49 0.29 0.09 0.05

n=100 99 0.22 0.24 0.01

Table (3.3.3)

Probabilistic Simulation result of the sampling distribution of the sample variance: U (10, 20).

SAMPLE SIZE

DEGREES OF

FREEDOM

SIMULATED

SKEWNESS

SIMULATED

KURTOSIS

P-VALUE OF
KOLMOGOROV-
SMIRNOV  CHI-

SQUARE _ (N-1)
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FITTING TESTS

n=2 1 1.47 1.60 0.01
n=5 4 038 -0.05 0.01
=10 9 027 0.01 0.01
n=15 14 0.13 -0.19 0.01
=20 19 0.06 -0.18 0.01
n=30 29 0.10 0.17 0.01
=50 49 0.07 0.05 0.01
=100 99 0.05 -0.07 0.01
Table (3.3.4)

Bootstrap Simulation results for the sampling distribution of the sample variance: U (10, 20).

SAMPLE SIZE DEGREES OF | SIMULATED SIMULATED P-VALUE OF
FREEDOM (N-1) | SKEWNESS KURTOSIS THE

KOLMOGOROV
SMIRNOV  CHI-
SQUARE  (N-1)
FITTING TEST

n=2 1 1.633 2.290 0.01

n=5 4 0.415 -0.307 0.01

n=10 9 0.285 -0.164 0.01

n=15 14 0.189 -0.059 0.01

n=20 19 0.188 0.098 0.01

n=30 29 0.181 0.099 0.01

n=50 49 0.190 0.194 0.01

n=100 99 0.116 -0.201 0.01

Table (3.3.5)

Probabilistic Simulation results for the sampling distribution of the sample variance: EXP (2).

SAMPLE SIZE DEGREES OF | SIMULATED SIMULATED P-VALUE OF THE
FREEDOM (N-1) | SKEWNESS KURTOSIS KOLMOGOROV

SMIRNOV CHI-
SQUARE (N-1)
FITTING TEST

n=2 1 4.56 29.90 0.01

n=5 4 5.48 52.82 0.01

n=10 9 4.19 23.86 0.01

n=15 14 7.05 74.69 0.01

n=20 19 5.90 53.66 0.01

n=30 29 5.46 45.13 0.01

n=50 49 5.80 59.64 0.01

n=100 99 5.71 49.56 0.01

Table (3.3.6)

Bootstrapping Simulation results for sampling distribution of the sample variance: EXP (2)

[ SAMPLE SIZE

| DEGREES

OF | SIMULATED

| SIMULATED

[ P-VALUE

OF |
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FREEDOM (N-1) | SKEW NESS KURTOSIS THE
KOLMOGOROV
SMIRNOV  CHI-

SQUARE  (N-1)

FITTING TEST
n=2 1 3.99 19.9 0.01
n=5 4 2.19 517 0.01
=10 9 1.63 3.18 0.01
n=15 14 131 1.87 0.01
=20 19 1.13 1.26 0.01
=30 29 0.92 0.82 0.01
=50 49 0.61 026 0.01
=100 99 031 -0.06 0.01

3.4 Simulations of Independence of the sample mean and the sample

variance:

In this section we have used the Probabilistic and Bootstrap simulation
methods to explore the joint distribution of the simulated sample mean
and the simulated sample variance based on an independent sample from
normal (0, 1), uniform (10, 20) and exponential distribution (2). We have

showed that the two statistics

n—1)s’ - :
w, = (% and v, = \/; x, are not correlated using the Pearson
(o)

Correlation Coefficient.

Using simulations and in particular, looking at the tables (3.4.1-3.4.6) we

arrived at the following conclusions:
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w,; and v, are not correlated when the underlying distribution is normal

and uniform regardless of the sample size, since the Pearson correlation
coefficient is not significant for each sample size.

However; Pearson correlation coefficients are significant when the
underlying distribution is exponential. That means they are correlated

We notice the sample means and the sample variance are not correlated
when the underlying distribution is symmetric for the cases N (0, 1) and

U (10, 20).

Table (3.4.1)

Correlation between the sample mean and the sample variance:

N(, 1)
Probabilistic Simulation Results Bootstrap Simulation Results
SAMPLE | PEARSON CORRELATION | P-VALUE OF THE || PEARSON P-VALUE OF THE
SIZE COEFFICIENT BETWEEN | CORRELATION TEST CORRELATION CORRELATION TEST
W&V COEFFICIENT
BETWEEN W & V
n=2 -.025 0.432 -0.058 0.07
n=>5 0.001 0.567 -0.036 0.26
n=10 -0.017 0.600 -0.061 0.06
n=15 -0.120 0.710 -0.030 0.25
n=20 -0.017 0.590 -0.083 0.10
n=30 -0.017 0.590 -0.053 0.10
n=50 -0.001 0.970 -0.045 0.15
n=100 0.003 0.929 -0.050 0.11




Table (3.4.2)
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Correlation between the sample mean and the sample variance:

U (10, 20)

Probabilistic Simulation Results

Bootstrap Simulation Results

SAMPLE SIZE PEARSON P-VALUE OF THE || PEARSON P-VALUE OF THE
CORRELATION CORRELATION TEST || CORRELATION CORRELATION TEST
COEFFICIENT COEFFICIENT
BETWEEN W & V BETWEEN W & V

n=2 0.040 0.204 -0.021 0.503

n=>5 0.025 0.427 -0.017 0.591

n=10 -0.081 0.100 -0.076 0.100

n=15 -0.019 0.549 -0.058 0.069

n=20 -0.006 0.858 -0.041 0.195

n=30 -0.004 0.906 -0.770 0.150

n=50 -0.011 0.739 -0.051 0.104

n=100 -0.012 0.694 -0.053 0.101




Table (3.4.3)
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Correlation between the sample mean and the sample variance:

Exp (2)

Probabilistic Simulation Results Bootstrap Simulation Results

SAMPLE SIZE PEARSON P-VALUE OF THE || PEARSON P-VALUE OF THE
CORRELATION CORRELATION CORRELATION CORRELATION TEST
COEFFICIENT TEST COEFFICIENT
BETWEEN W & V BETWEEN W & V

n= 0.627 .000 0.646 0.00

n=5 0.619 .000 0.726 0.00

n=10 0.601 .000 0.744 0.00

n=15 0.602 .000 0.738 0.00

n=20 0.633 .000 0.734 0.00

n=30 0.619 .000 0.736 0.00

n=50 0.601 .000 0.732 0.00

n=100 0.658 .000 0.719 0.00

SUMMARY OF

RESULTS

THE

SIMULATED
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Considering all the simulated results in this study, we conclude that, in
large samples, the sampling distribution of the sample mean, the sample
median and the sample variance can be approximated by a normal
distribution regardless of the shape of the underlying distribution with a
very small simulated bias.

In addition the theoretical standard deviation and the simulated standard
deviation of these statistics get closer to each other as the sample size
increases. However; the simulated standard deviation of the sample mean
is smaller than the simulated standard deviation of the sample median.
For symmetric underlying distributions: normal and uniform distribution,
the shape of the sample mean and sample median is approximately
normal even for the small sample sizes ( n <30).

In this case, also the theoretical standard deviation and the simulated
standard deviation of these statistics get closer to each other as the sample

size Increases.

For non symmetric underlying distributions, these approximations
converge to normal for large samples. For non symmetric underlying
distribution large samples are needed for convergence.

(n —1)s
The simulated statistics of o? can be approximated by a chi-

square distribution with n-1 degrees of freedom if the sample size is less
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than 30 and the underlying distribution is normal. Thus, symmetric
underlying distribution is not adequate for this approximation.

Finally the simulated results shoed analytically that the sample mean and
the sample variance are not correlated when the underlying distribution s

are uniform or normal.

Chapter Four

Conclusion and Recommendations

4.1 Conclusion
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In this thesis, we used the probabilistic and the bootstrap simulation
methods to investigate the sampling distribution of the sample mean, the
sample median, and the sample variance for different sample size and
different underlying population distribution.
In particular, we used the above-mentioned methods of simulation to
study graphically and computationally the two common properties of an
estimator: bias and standard error. In addition, the shape of the sampling
distribution of these statistics has been studied graphically and
analytically using the histogram and the Kolmogorov-Smirnov goodness-
of-fit test.
From the graphical, computational and the analytical simulated results
using the probabilistic and the bootstrap methods, we conclude that in
large samples, the sampling distribution of the sample mean, the sample
median and the sample variance can be approximated by a normal
distribution regardless of the shape of the underlying distribution. In
addition, we can conclude that the simulated bias is very small, that for
practical purpose and due to rounding errors can be considered equal to
the population mean.

Upon comparing between the simulated standard deviation and the
theoretical standard deviation of these statistics, we can conclude that

these values get closer to each other as the sample size increases.
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In addition, the simulated standard deviation of the sample mean is

smaller than the simulated standard deviation of the sample median. This
agrees with the theory that the sample mean has smaller variance than the
sample median.
For the symmetric underlying distributions, normal and uniform, we can
conclude graphically and analytically that the shape of the sampling
distribution of the sample mean and the sample median is approximately
normally distributed even for small sample size.

In addition, we can conclude that the simulated bias is very small, that
for practical purpose and due to rounding errors can be considered equal
to the population mean. Upon comparing between the simulated standard
deviation and the theoretical standard deviation of these statistics, we can
conclude that these values get closer to each other as the sample size
increases.

In addition, the simulated standard deviation of the sample mean is
smaller than the simulated standard deviation of the sample median. This
agrees with the theory that the sample mean has smaller variance than the
sample median.

But if the underlying distribution is not symmetric (i.e. the exponential
distribution), we can conclude graphically and analytically that the shape
of the sampling distribution of the sample mean and the sample median is

approximately normally distributed for large sample size.
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The graphical and the analytical simulated results indicated that the shape

(n —1)s}

of the sampling distribution of the statistics o? is approximately

chi-square with n-1 degrees of freedom for small sample size(n S30)

and the underlying population is normal.

The simulated results showed that the sample mean and the sample
variance are not correlated when the underlying population distributions
are uniform or normal. However, the simulated results showed that these

statistics are correlated when the underlying distribution is not symmetric.

4.2 Recommendations

Several questions have not been addressed in this thesis.



1)

2)

3)
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It should be of some interest to investigate the above results using
several different types of resampling: permutation, cross-validation,
and jackknife.

To investigate the above results using the bootstrap resampling
method by considering other symmetric distribution to include the
triangular distribution, the t distribution and other non-symmetric
distributions to include the chi-square distribution, and the beta
distribution.

To investigate the sampling distribution of other sample statistics to
include, the correlation coefficient, and the slope of the simple linear

regression.
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Figure (3.1.1) Probabilistic simulation histograms for the sampling distribution of the sample mean, N (0, 1)
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Figure (3.1.2) Bootstrap simulation histograms for the sampling distribution of the sample mean, N (0.1).
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Figure (3.1.3) bootstrap simulation histograms for the sampling distribution of sample the mean, U (10, 20).
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Figure (3.1.4) Probabilistic simulation histograms for the sampling distribution of the sample mean, U (10, 20)
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Figure (3.1.5) Bootstrap simulation histograms for the Sampling distribution of the sample mean, EXP (2).
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Figure (3.1.6) probabilistic simulation histograms for the sampling distribution of the sample mean, EXP (2).
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Appendix 2

Figure (3.2.1) Probabilistic simulation histograms for Sampling distribution for the sample median, N (0, 1).
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Figure (3.2.2) Bootstrap simulation histograms for Sampling distribution of the sample medians, N (0, 1). medians

NR=1000 normal(0,1) n=10

bootstrapping for median of n=10

Std. Dev = .38
Mean =.04
N=1000.00
-1.13 -88 -63 -38 -13 .13 38 63 .88 113
-1.00 -75 -50 -25 000 .25 50 75 1.00

theoritical mean=0  theoritical std.dev=0.39

kolmogorov-smirmov d=0.0327789 p=n.s

Histogram
9

120

100

80

60

40

20

120

NR=1000 normal(0,1) n=5

bootstrapping for median of n=5

G s e e O O S
579 %7 8 D < QS 0

theoritical mean=0  theoritical std.dev=0.56

kolmogorov-smirnov d=0.0327797 p=n.s

NR=1000 normal(0,1) n=15

bootstrapping for median of n=15

Std. Dev = .55

Histogram
10

Mean = .06
N=1000.00

80

60

40

20

Std. Dev =.32
Mean = .04

N=1000.00

0% G % % %0 2 % % Yo Y % BB Y S

theoritical mean=0  theoritical std.dev=0.32

kologorov-smimov d=0.0308429 p=n.s

79



NR=1000 normal(0,1) n=2

bootstrapping for median of n=2
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Figure (3.2.3) Probabilistic simulation histograms for the sampling distribution of the sample median: U (10, 20).
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Figure (3.2.5) Probabilistic simulation histograms for the sampling distribution of the sample median. EXP (2).
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Figure (3.2.6) Bootstrap simulation histograms for sampling distribution of the sample median, EXP (2).
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APPENDIX 3.

Figure (3.3.1) Probabilistic simulation histograms for sampling distribution of the sample variance, N (0.1)

NR=1000 normal (0,1) n=2
(n-1)*sample var / population var

Histogram
; 2
= Histogram NR=1000 normal (0,1) n=5
100 Std. Dev =145 1
pen=100 (n-1)*sample var / population var
Oozedvss)sazzlzlib 3007
% "% % "% "% "% %% "% “% % 24,74,%0,%, %,

degrees of freedom =1
kologorov-simimov d=0.0224769 p=n.s

sarple size 'n=2"

Std. Dev =2.84
Mean = 4.0
N =1000.00

60 80 100 120 14.0 16.0 18.0
10 30 50 70 9.0 11.0 13.0 150 17.0 19.0
degrees of freedom=4
kolmogorov-smirnov d=.0224769 p=n.s

sample size "n=5"

NR=1000 normal (0,1) n=10
NR=1000 normal (0,1) n=15
(n-1)*sample var / population var

(n-1)*sample var /population variance
200 T

Histogram

3 Histogram

4

Std. Dev =4.47 Std. Dev =548
Mean =9.2 Mean = 14.2
N =1000.00 0 N=1000.00
P R A N R R 3, 40 80 120 160 200 240 280 320 360 400
090 %0 "0 %0 77,78, B 0 B P R Ty

60 100 140 180 220 260 300 340 380 420
degrees of freedom = 9 degrees of freedom =14

kolmogorov-smirnov d=.0224769 p=n.s. kolmogorov-srrirnov d=.0183492 p=n.s

sample size "n=10" sanple size "n=15"



NR=1000 normal (0,1) n=20

(n-1)*sample var /population var

Std.

6, B T o < % R D %
0 2, %, B, R, B, B, %, B, °, %, Y

degrees of freedom =19
kolmogorov-smirnov d=.0200673 p=n.s

sample size "n=20"

NR=1000 normal (0,1) n=50

(n-1)*sample var /population var
140
1

Histogram
7

SN SRR S Y NI S N &
PR BB BB B o B D

degrees of freedom =49
kolmogorov-smirnov d=.0244664 p=n.s

sample size "n=50"

Histogram
5

Dev =6.36

Mean =19.4
N=1000.00

Histogram
8

Std. Dev = 10.00
Mean =49.4
N=1000.00

NR=1000 normal (0,1) n=30

(n-1)*sample var /population var

140

Histogram
6

Std. Dev =7.81
Mean =29.5
N=1000.00

0, %, 8 0,8 0 % B R e, Y % B R

‘0 "o %o Yo “o "o “o "o Yo "o "o “o “o to
degrees of freedom =29

kolmogorov-smirnov d=.0148318 p=n.s

sample size "n=30"

NR=1000 normal(0,1) n=100

(n-1)*sample var /population var

Std. Dev = 14.15
Mean = 99.7
N =1000.00

Ea S 2
2550535

o I N KRR RN R R RN
‘05070509305 359535%5 50990 %0 S0

degrees of freedom =99
kolmogorov-smirnov d=.0265951 p=n.s

sample size "n=100"

88



Figure (3.3.20 Bootstrap simulation histograms for the sampling distribution of the sample variance, N (0.1)
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Figure (3.3.3) Probabilistic simulation histograms for the sampling distribution of the sample variance, U (10, 20).
NR=1000 uniform (10,20) n=2
(n-1)*sample var / population var

* Histogram
20 Histogram . 18
17 NR=1000 uniform (10,20) n=5
. (n-1)*sample var / population var
Std. Dev =1.21 120
Mean =1.04
0 N=1000.00
% % %4 %% %o % % %% % %% %, %,
kolmogorov-smirnov d=.0489987 , p<.05 sig
population variance=8.33
Std. Dev =2.00
Mean =4.14
- - - - - = - N=1000.00
@ % % % "o % %% % %% %% 27 %
kolmogorov-smirnov d=.0.130918 , p<.01 sig
population variance=8.33
NR=1000 uniform(10,20) n=10 NR=1000 uniform (10,20) n=15
(n-1)*sample var / population var (n-1)*sample var / population var

Histogram
19

Histogram
20

Std. Dev =2.94
Mean =9.2
N=1000.00

Std. Dev =3.65
Mean =14.2
N =1000.00

6.0 80 100 120 140 160 180 200
3.0 5.0 7.0 90 110 130 150 170 19.0

kolmogorov-smirnov d=.0.1070625 , p<.01 sig kolmogorov-smirnov d=.0.1079178 , p<.01 sig

population variance=8.33 population variance=8.33



NR=1000 uniform (10,20) n=20

(n-1)*sample var / population var

120

Std. Dev = 4.02
Mean = 19.2
N=1000.00
R SR A A N N N N - )
0 S0 7, B, 8, Ty 8 Ty Ny Ny Yo % T,

kolmogorov-smirnov d=.0.1193083 , p<.01 sig

population variance=8.33

NR=1000 uniform (10,20) n=50

(n-1)*sample var / population var
160
1

Histogram
23

Std. Dev =6.08
Mean =49.1
N=1000.00

320 360 400 440 480 520 560 600 640 680
340 380 420 460 500 540 580 620 660 700

kolmogorov-smrirnov d=.1355887 , p<.01 sig

population variance=8.33

Histogram
21

Histogram
24

NR=1000 uniform(10,20) n=30

(n-1)*sample var / population var

100

7 7o % D Y &2 % Z- %
7'0 6'\0 d”O\;b'O T:’0 7’0 6:‘0 ts"0(%?0 9'0\37'0 6"0 6?0790 9_0 YY'0

kolmogorov-smirnov d=.1398639 , p<.01 sig

population variance=8.33

NR=1000 uniform (10,20) n=100
(n-1)*sample var / population var

Histogram
22

Std. Dev =4.82
Mean =29.2
N=1000.00

%

A P & 9 7 7 7 7, 7, 7 7
So % %o Q?o %-)o o %\o 00.0 07.0 °<?o S ’6.‘0 0, %

o

kolmogorov-sirirnov d=.1196141 , p<01 sig

population variance=8.33

Std. Dev =8.68
Mean=99.3
N=1000.00

92



Figure (3.3.4) Bootstrap simulation histograms for the sampling distribution of the sample variance, U (10, 20).
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Figure (2.3.4) Probabilistic simulation histograms for the sampling distribution of the sample variance, EXP (2).
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Figure (3.3.5) Bootstrap simulation for the sampling distribution of the sample variance, EXP (2).
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